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The rate at which a particle in suspension can capture diffusing solute molecules can be 
increased by stirring the fluid. It is shown that the increase is closely related to the 
total power expended, per unit volume of fluid, by the stirring device. The increase in 
diffusion current to a particle is related to the local rate of deformation of the fluid s2 
(which, in turn, determines the dissipation) by a function F(Qa2/D), where a is the 
particle radius and D the diffusion constant for the molecule in question. The function 
F has been determined experimentally by investigating the corresponding problem in 
heat transfer. In  a fluid of viscosity 7, stirring which is vigorous enough to double the 
mean diffusion current to a particle must entail a power dissipation, per unit volume, 
not less than 500~D2/a4.'For particles a few microns in size, or smaller, in water, effec- 
tive stirring is not feasible. The results can be used also to predict the effect of stirring 
on the coagulation of similar particles. To double, by stirring, the rate at  which par- 
ticles of radius b form dimers requires a stirring power proportional to bk6, and is not 
feasible in water if b is less than lo-5cm. 

To what extent can stirring a solution increase the rate of absorption of the solute 
molecules by particles suspended in the fluid? This question arose in a study of the 
acquisition of attractant molecules by bacterial cells (Berg & Purcell 1977). I wish to 
deal with it here in a more general context, the only restriction being that the absorbing 
particles are not too large and are far apart relative to their size. Practically speaking, 
I shall be interested in particle sizes ranging from 

To begin with a well-defined problem, consider a dilute suspension of spherical 
particles, each of radius a, in a solution of some molecular species X which is charac- 
terized by the diffusion constant D. Assume that any X-molecule that reaches the 
aurface of one of the particles is permanently absorbed or possibly adsorbed; the 
distinction is here irrelevant. In any case the particle is supposed to remain at all times 
a perfect sink for X-molecules. If the distance between neighbouring particles is much 
larger than a, the mean rate at  which a particle collects X-molecules, which we shall 
call the current J,, is given by 

Here c, is the concentration, in X-molecules per unit volume, far from an absorber. 
This asymptotic concentration is to be maintained by addition of material as needed. 
In the vicinity of an absorbing particle the concentration varies with the distance 
from the centre of the spherical particle according to 

cm to 10-2 cm. 

J, = 4?raDc,. ( 1 )  

c = (1 -a/?) c,. (2) 
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All this applies if the fluid is motionless. Agitation ofthe fluid surrounding an absorb- 
ing sphere, if vigorous enough, can increase the steady current J above the value J,. It 
can do so by bringing close to the absorber parcels of fluid with the higher concentration 
found further out, thus increasing the concentration gradient around the absorber. 
Indeed, that is the only way stirring can increase the current collected by the absorber. 
It cannot convey an X-molecule directly to the surface; the last stage, so to speak, of 
the molecule’s journey must be accomplished by diffusion alone. 

If a region of size a next to the absorber were suddenly to be enriched in X-molecules, 
it would be depleted by diffusion in a time of the order of magnitude a2/D. Therefore, if 
the motion of the fluid is to have any significant effect upon the current J, it must 
involve velocities v such that a/v 5 a”D. 

A uniform fluidvelocity, however large, would have no effect at all; the absorbing sphere 
would simply be carried along with the fluid. Equation (3) must be viewed as a con- 
dition on the gradients of the velocity field in the neighbourhood of the particle. We 
require that at least some components of the tensor grad v be of magnitude D/a2 or 
larger. The condition may be expressed as 

(3) 

)avi/axi) z $D/a2 with $2 1. (4) 

On the scale of the particle size a, the Reynolds number Re for the flow is avplq, or in 
view of (4), $Dp/r, where 7 is the fluid’s viscosity and p its density. If we use the 
Einstein-Smoluchowski relation D = kT/B?~vr,,, to express the molecular diffusion 
constant D in terms of an effective molecular radius ref,, the Reynolds number can be 
written as Re = $kTp/6ny2re,,. 

We are concerned with normal temperatures, ordinary liquid densities and viscosities 
not smaller than that of water, 10W dyne s/cm2. Then even if rell is as small as 2& (5) 
gives Re = We shall not be concerned with very large values of the numerical 
factor ,8. It will turn out that, in practice, a value of ,8 large enough to make Re > 1 is 
attainable only for particles some millimetres in size or larger. With the understanding 
that our conclusions might need modification for a greater than, say, 1 mm, we can be 
sure that the velocity field in the vicinity of the absorber is characterized by a Reynolds 
number much smaller than one. Inertial forces can therefore be neglected. Of course, 
the primary motion driven by the stirring mechanism may be, and usually will be, a 
highly turbulent large-scale flow, the kinetic energy of which is continually transferred 
into eddies of smaller and smaller size until viscous friction ultimately takes over at  the 
scale usually called the Kolmogorov length. Our concIusion about the Reynolds number 
is tantamount to the observation that the Kolmogorov length for the flow is much 
larger than the size of our absorbing particles. This is important, for it means that the 
only features of the flow that we shall need to consider are not strongly dependent on 
the structure of the large-scale motion driven by the stirring mechanism. 

To see what kind of flow would be capable of altering the distribution of X-molecules 
around an absorber, imagine that the diffusion is ‘turned off’ when the distribution has 
attained the form it would have in the stationary fluid, given by (2).  To change such a 
distribution by deforming the incompressible fluid clearly requires a shearing deforma- 
tion. The velocity gradients in a shearing deformation are just those that form the 

( 6 )  
viscous stress tensor 

(5) 

= r(aw,/axj + avj/aXi). 
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In fact, these are the only combinations of first derivatives of velocity that need to be 
considered. A rotation, involving combinations like avi/axj - avj/axi, obviously has no 
effect on a spherically symmetric distribution. But it would have no effect on the 
current to the absorber even if the distribution were not spherically symmetric 
because, inertial forces being negligible as we have already seen, the absorbing particle 
would merely rotate with the local fluid. We conclude that the effect of Auid motion 
upon the distribution of X-molecules around the absorbing particle is entirely deter- 
mined by the components of the viscous stress tensor that appear in (6). 

The same components also determine completely the rate at which energy is being 
dissipated by viscous friction, in a unit volume of fluid. Let us denote that rate by S. It 
is given explicitly (Landau & Lifshitz 1959, p. 54) by 

S is the total rate at which kinetic energy is turning into heat, per unit volume. For 
continuous stirring the integral of S over the entire volume stirred gives the mechanical 
power output of the stirring device. This suggests a remarkably simple relation be- 
tween the total power invested, by whatever means, in agitating the fluid and the 
effectiveness of stirring on the microscopic scale. Can it be that the details of fluid 
motion on intermediate scales are irrelevant and all that matters in determining the 
current enhancement J/Jo is the total power expended? (In the case of an ordinary 
rotary agitator or blender that power is just the product of the torque and shaft 
speed.) 

Before drawing so sweeping a conclusion we must be able to rule out the possibility 
that two different velocity fields could have equal values of (S) ,  the space and time 
average of the quantity S given by (7), but nevertheless differ in the resulting current 
enhancement factor JIJ, for the same size of absorbing particle. Two independent 
arguments against that possibility can be made. The first is an appeal to the theory of 
isotropic turbulence, according to which as we go down the hierarchy of eddy scales 
the turbulent velocity field becomes statistically isotropic and independent of the 
large-scale pattern. This should hold a fortiori at scales below the Kolmogorov length. 
In that case the specification of (S)/q would suffice to determine all kinematic features 
of the flow on the scale a, including its effect on JIJ,. 

A different argument can be based on our observation that the variables on which 
J/J, must depend are just the deformation rates avi/axi + avj/axi. In  fact, J/J,  must be 
an even function of these quantities, for reversing the sign of all the space derivatives 
could not change JIJ,. We therefore expect the fractional increase in current JIJ, - 1 
to be proportional to the square of a deformation rate, for rates sufficiently small. But 
then it will differ from ( S )  only by some constant factor depending on the parameters 
a, D and q. In  that case the total power input would determine JIJ, even if the stirring 
were not uniform throughout the volume. It will turn out, however, that for deforma- 
tion rates high enough to achieve a significant increase in current J/J,- 1 increases 
more slowly than the square of the local deformation rate. Consequently, for given 
total power invested, the stirring will be most effective if the dissipation is uniform 
throughout the stirred volume. I shall discuss that special case first. 

Suppose that we are able to determine the factor JIJ, by which the current to a 
spherical absorber of radius o is increased if the particle finds itself in a region where one 
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component of the viscous stress tensor, say q(8vx/ay + av,/ax), has a locally uniform 
non-zero value and other components are zero. Denote this value by qQ; i.e. let 

(8) 

(By 'locally uniform' I mean that R would be constant throughout a region much 
larger than a if the particle were not there. Of course the flow is different in the im- 
mediate neighbourhood of the spherical particle.) 

The value of J/Jo can depend only on the kinematics of the flow and the diffusion 
constant D, i.e. only upon SZ, a and D.  The dimensionless combination in which these 
variables will appear can only be Qaa/D, or powers thereof. The energy dissipated per 
unit volume is +qQ2. In  this case, for given a and D ,  a particular value of J/Jo will be 
associated with a certain value of the mean stirring-power density P .  

Let us denote by u the dimensionless combination Raz/D, and let J/Jo = F(u) .  The 
function F ( u )  could be found by solving the following problem. Consider first the 
irrotational velocity field with uniform shearing stress: 

Q = avxlay + av,/ax. 

vo(r) = BQ(*y + 9%). (9) 

Now immerse in this fluid a small sphere of radius a, located on the z axis, and find the 
new velocity field v(r) which approaches vo(r) asymptotically. This velocity field is 
zero on the surface of the sphere r = a and for r > a satisfies the equations for incom- 
pressible flow at very low Reynolds number: div v = 0 and W(cur1v) = 0. Having 
found v(r), solve the diffusion equation 

(10) 

with c = 0 at r = a and c = c, at infinity. Then P(u)  will be given by (alc,) (ac/ar),=, 
with u given by Qa2lD. 

Rather than attempt that solution, I have resorted to an experimental determina- 
tion of F(u)  through an investigation of the identical problem in heat transfer. If we 
replace c by temperature and D by the thermal diffusivity of the Auid a ( =  thermal 
conductivity/heat capacity per unit volume), what was the diffusive current J 
becomes the current of heat to or from the sphere, the temperature difference between 
the sphere and remote liquid being c,. The problem is one of heat transfer in forced 
convection. One might even hope to find the problem already solved in the literature. 
But that hope fades when one realizes that if scaled up to macroscopic dimensions the 
system lies far outside any regime of practical interest in heat transfer. We must deal 
with fluid velocities near the sphere as small as v w Dla. Replacing D by a, which is 
typically not much greater than cm2/s, we see that for a w 1 cm velocity gradients 
as small as 10-3s-1 will be important. In  a normal liquid, free convection driven by 
gravity would swamp any motion as slow as that, even for rather small temperature 
differences. For our purposes, fortunately, convection can be suppressed by using a 
liquid of high viscosity. 

The liquid used was Dow-Corning 200 Fluid (dimethylsiloxane polymer) with a 
viscosity at 25 "C of 60000 cS.  This material has a thermal conductivity of 0.00037 
cal/cms "C and a thermal diffusivity of 0.00100 cm2/s. A velocity field approximating 
that described by (9), in a central region, was established by four slowly rotating 
cylinders (figure 1). In  this geometry the value of Q in the central region is approxi- 
mately 1.780, where o is the angular speed of each cylinder, so that u = 1-78wa2/a. 

DV2c + v .  (gradc) = 0 
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FIQURE 1. Plan view of the arrangement of the rotating cylinders and the spherical heat source in 
the bath of Dow-Corning 200 fluid. The axial length of the cylinders is 14 cm. The aluminium 
sphere, within which two thermistors are epoxied, was held by taut nylon filaments. The heat 
lOSS through these filaments and the leads to the thermistors was negligible. One of the ther- 
mistors, supplied from a constant-current source, served aa the heater. Thermistors T3, T,, 
T6 and TB, connected together, served to measure the bath temperature. The spur gear c f  was 
driven by a stepping motor outside the bath. 

The cylinders were driven, by means of the spur gear, by a stepping motor. Their 
speed w ranged from 0.0017 to 0.120 rad/s, in various runs, covering a range in u of 
from 0.7 to 49. The aluminium sphere was located on the symmetry axis and midway, 
vertically, along the length of the cylinders. It contained two separate thermistors. One 
was used merely as a heater, the other to measure the temperature of the aluminium 
sphere. The temperature of the remote fluid was measured by several thermistors 
around the periphery. 

With the cylinders turning at  a constant speed w ,  the temperature difference At 
between sphere and bath and the heating power p ,  were measured after a steady 
state had been attained. For fixed o, the relation between At and ph was linear 
within the accuracy of the measurements, showing that free convection was playing 
anegligible role. The value of F(u),  where u = Qa2/ct, is simply the ratio of the 
heating power required to maintain a temperature difference At between the source 
and the bath to the power required to maintain the same At with the cylinders 
stationary. 

The results are given in figure 2 as a logarithmic plot of Ffu) - 1 against the dimen- 
sionless variable u, which is Qa2/u in the heat-transfer problem and Qa2/D in the 
diffusion problem. Of course these results, even if free of experimental error, would not 
represent an exact solution to the stated problem of a spherical source in an unbounded 
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FIGURE 2. F ( u )  - 1 is the fractional increase in heat current for constant power caused by fluid 
motion characterized by the deformation rate Q, the dimensionless variable u being defined as 
Qa2/a (a = thermal diffusivity). It is also the fractional increase in diffusion current to a spherical 
sink for a given concentration of the bath, with u defined in that case as Qaa/D. Circles are experi- 
mental points from the thermal model. The curve was drawn through them by eye. 

medium. For one thing, the relation between R and the observed w is only approxi- 
mate; the flow is not precisely that specified in (9). Also, because of the high thermal 
conductivity of the metal cylinders, the outer thermal boundary of the system, to 
which the ‘bath temperature’ refers, is in effect some irregular surface not much 
further away from the source than the nearest part of a cylinder: a distance that may be 
roughly estimated as 8-10 times the radius a of the sphere. This increases the heat loss 
from the sphere by some 10-12 % compared with the case of an infinite medium. It 
could hardly have a larger effect on the relative increase in heat loss caused by stirring. 
I believe that the true F ( u )  for a sphere immersed in the velocity field (9) is not likely to 
differ by more than 20 yo from the curve through the experimental points in figure 2. 
Notice that the slope of the logarithmic curve is approaching 2 at the smallest values of 
u, confirming our expectation that F ( u )  - 1 would be quadratic in u in the neighbour- 
hood O ~ U  = 0. 

Suppose that we say, more or less arbitrarily, that stirring is effective if it more than 
doubles the current to the absorbers, i.e. if F ( u )  > 2. According to figure 2 that re- 
quires a value of u not less than 30. Setting Ra2lD = 30, we find that the minimum 
stirring power S m i n  required, per unit volume, is 

S m i n  = &qR2 = 450qD2/a4. (11) 

Considering the experimental inaccuracies mentioned above and the flatness of the 
curve, the value of u for which the true F ( u )  equals 2 could conceivably be as low as 20. 
In  that case the coefficient in (1 1 ) would be 200. 

Equation (1  1) was obtained for the special case in which the deformationwas uniform 
throughout the volume. That will not be true in general. We must ask instead for the 
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value of the average stirring-power density (S)min which will ensure that the average 
factor of current increase (F(u) )  is 2. Here the brackets denote a space and time 
average over the stirred volume. To calculate (S)min we should need in addition to the 
function F ( u )  some knowledge of the distribution function for R2, the square of the 
local deformation rate. For example, suppose that R2, which I shall abbreviate by 
W ,  has an exponential distribution with mean value v. Assume, in other words, that 
at any instant the fraction of the total volume in which Q2 exceeds a particular value 
W is exp ( - W / w ) .  Let W* denote the value of R2 determined by (11): 

W* = 900D2/a4. (12) 

Write the function F(u)  - 1 as f(  W ) ;  then f( W*)  = 1. In  the neighbourhood of W*, f( W )  
can be represented approximately by 

f (W) = (W/W*)., (13) 

using which we can find an approximation for the average value off( W ) :  

(!(w)> N m-l/om(W/W*)vexp(- W / W ) ~ W  = (w/w*pr(v+i). (14) 

The mean stirring-power density required to double the average current will be deter- 
mined by that value of w, which I shall denote by w,, which makes cf( W ) )  = 1. 

From (14) we have 
FV 1 -  - w*[r(v+ 1)]-1k (15) 

Inspecting figure 2, we find that the logarithmic derivative of F ( u )  - 1 around u = 30 is 
approximately 0.48, so that v = 0.24. Then (15) gives 

= 0.49W*. (16) 

The result is rather insensitive to v ;  for v = 0.2 the factor would be 1.53; for v = 0-3 it  
would be 1.43. Notice that for v = 1,  i.e. for quadratic dependence of F(u)  - 1 upon u, 
we get vl = W*, a result that would hold for any distribution of W.  

significantly larger 
than 1-5 W*. For a distribution narrower than the exponential distribution we should 
find Vl/ W* somewhere between 1.5 and 1.0. Referring to ( 1  1) we now have for (S)min 

It would take an extremely broad distribution of W to give a 

(8)min  = 450(q/W*) 7D2/a4. (17) 

In view of the uncertainty in the numerical coefficients in (1 1)  and (12), our ignorance 
of the actual distribution function for R2, and the approximation introduced by (13), I 
shall adopt, as a rounded-off estimate of the mean stirring power required to double 
the current, the formula 

I believe it unlikely that this is in error by more than 50 yo either way. 
For a spherical particle of radius 1 pm in water, with D = 10-5 cm2/s, which might be 

typical for a fairly small molecule, the stirring-power density for doubling the rate of 
absorption is 0.5 W/cm3. Clearly that is violent stirring. Among other things, it would 
cause a temperature rise of more than 0.1 "C per second ! For particles of radius 1Opm 
on the other hand, the modest investment of 50 pW of mechanical power per cm3 
would suffice to double the rate of capture of diffusing molecules. Considering the 

(S)min = 5O07D2/a4. (18) 



558 E .  M .  Purcell 

strong dependence on particle size, we can predict without much qualification that for 
particles smaller than a few microns effective stirring will be hardly feasible, while for 
particles larger than a few microns it will be easy. Of course that assumes values for 7 
and D not grossly different from those in the foregoing example. But note that accord- 
ing to the Einstein-Smoluchowski relation the product yD will tend to be a constant 
for a given solute molecule. Then the entire numerator in (18) will vary only as 7-l. 

Our result can be applied to the coagulation of similar particles which are themselves 
diffusing, as in a colloidal suspension. Consider a suspension of isolated spherical 
particles (monomers) of radius b any two of which will stick together when they come 
in contact, forming a dimer. Beginning with monomers only, dimers will be formed at  a 
rate determined by the concentration of monomers and their diffusion coefficient. TO 
what extent can the rate of formation of dimers be increased by stirring the suspension? 

The problem is essentially the same as the one we have just solved. The only differ- 
ence is that, instead of a rapidly diffusing molecule and an absorbing particle so massive 
that its own Brownian motion could be neglected, we have here similar particles, whose 
Brownian motion with respect to one another is the effective diffusion process. 

The diffusion coefficient for a particle of radius b in a fluid of viscosity 7 is kT/6~7b, 
but we must double this to obtain the value of D that characterizes the relative Brown- 
ian motion of two particles. We may think of the centre of one spherical particle as a 
diffusing molecule which is captured when it approaches within 2b of the centre of 
another particle. To adapt (18) to this problem, therefore, we replace D by kT/3nyb and 
a by 2b, obtaining 

In doing so we ignore the fact that, when the gap between two particles becomes small 
compared with the particle radius, the fluid dynamics must be somewhat different 
from the Stokes flow upon which the Einstein-Smoluchowski relation is based. In  other 
words there will be in actuality some change in the effective diffusion constant D as 
two particles approach one another closely. Equation (19) is therefore a poorer 
approximation than (18), on which it is based. The important conclusion to be drawn, 
however, is very insensitive to the numerical coefficient in (19). 

For particles of radius 10-5 cm in water (1 9) predicts that the mechanical stirring 
power required to double the initial rate of dimer formation will be 6mW/cm3 or 
6 W/l. That is a moderate, though by no means negligible, degree of agitation. On the 
other hand, particles of half that radius would require an investment of mechanical 
power 64 times greater, or about 8 h.p./l ! Depositing energy at  that rate in water by 
continuous stirring would present severe problems, including cavitation. I think that 
we may consider the requirement expressed in (19) prohibitive for particles of radius 
0.5 x cm. Thanks to the very strong dependence of stirring power on particle 
radius, we find a rather sharply defined limiting particle size below which effective 
stirring is not feasible. This limit lies somewhere between 0.5 x 10-5 and 1.0 x 10-5 cm. 

Essentially the same conclusion, formulated less quantitatively, can be found in the 
classic papers of Smoluchotvski (1916a, b )  on the coagulation of colloids. Smoluchowski 
considered the effect of stirring in connexion with some puzzling experimental results 
of H. Paine, for which he was able to give an elegant explanation. The crucial point, in 
Smoluchowski's words, is that 'The coagulating action of stirring increases at  a quite 
extraordinary rate with particle size. . . In  short, energetic stirring causes rapid coagula- 
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tion of microscopic particles, but leaves submicroscopic and amicroscopic particles 
unaffected. ’ (Smoluchowski 1916b, p. 599; my translation.) 

In detail, Smoluchowski’s analysis of the effect of fluid shear on the rate at which 
diffusing spheres come into contact was somewhat oversimplified and tended to over- 
estimate the effect of a given rate of shearing deformation. If used to derive a relation 
like (19 )  his method would have given a considerably smaller numerical coefficient. He 
did not, in fact, remark on the quantitative relation between the stirring. power 
dissipated in the fluid and the effectiveness of the motion in promoting coagulation. 
But he made the essential point and located the critical size somewhere between 
‘microscopic’ and ‘submicroscopic’, a conclusion with which the one we have just 
reached appears consistent. 

We have considered only spherical particles. A quantity strongly dependent on 
particle size must be expected to depend on particle shape. It would be interesting to 
know what relation corresponds to (19 )  for, say, rod-like particles. To derive it would be 
a formidable problem. For one thing, non-spherical particles will themselves tend to be 
oriented by the deformation of the fluid. Perhaps even more interesting would be the 
effect of stirring upon the coagulation of string-like objects. For such problems the 
methods of this paper appear to be hopelessly inadequate. 

I am indebted to Paul Horowitz for advice and help in the design of the experiment, 
to G. von Schulthess for calling my attention to the Smoluchowski papers, and to 
David Griesinger for a valuable suggestion. 

Note added in proof. It has been pointed out to me by G .  Rybicki and W. Press 
that an axially symmetric deformation (e.g. polar flow inward with equatorial flow 
outward) could have served as well as the flow specified by ( 9 )  to establish a con- 
nexion between the deformation rate and the increase in diffusion current, and that 
the velocity field for such a flow around a sphere is obtainable from the formulae 
for a more general flow around a sphere derived in Batchelor (1967, p. 249). 
Although less convenient for the thermal experiment, the axially symmetric flow 
would be amenable to the relaxation method used to treat the problem of diffusion 
in a Stokes flow field as described in Berg & Purcell (1977). In  that way values of 
P(u) might be found by computation. 
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